Fancy DSA Fancy DSA
数据结构
算法
LeetCode
  • 关于
  • 导航 (opens new window)
  • 分类
  • 标签
  • 归档
设计模式 (opens new window)
博客 (opens new window)
GitHub (opens new window)

Jonsam NG

想的更多,也要想的更远
数据结构
算法
LeetCode
  • 关于
  • 导航 (opens new window)
  • 分类
  • 标签
  • 归档
设计模式 (opens new window)
博客 (opens new window)
GitHub (opens new window)
  • 开始上手
  • Plan 计划
  • Roadmap 路线
  • 算法简介
  • Sort 排序

  • Search 搜索

  • Recursive 递归

  • Graph 图

  • Tree 树

  • Math 数学

  • Hash 哈希

  • String 字符串

  • BitManipulation 位操纵

  • Backtracking 回溯

  • DynamicProgramming 动态规划

  • Cache 缓存

  • Array 数组

    • LocalMaxPoint [局部最值]
    • QuickSelect [快速选择]
      • 介绍
      • 实现
      • 参考
  • Ciphers 密码学

  • Conversions 转换

  • ProjectEuler 欧拉计划

  • 其他

  • 算法
  • Array 数组
jonsam
2022-09-26
目录

QuickSelect [快速选择]

# 介绍

Quickselect 是一种选择算法,用于寻找无序列表中第 k 个最小的元素。它与快速排序的排序算法有关。

该算法与 QuickSort 相似。不同的是,它不是对两边都进行递归(在找到支点后),而是只对包含第 k 个最小元素的部分进行递归。逻辑很简单,如果被分割的元素的索引大于 k,那么我们对左边的部分进行递归。如果索引与 k 相同,我们就找到了第 k 个最小的元素,我们就返回。如果索引小于 k,那么我们就对右边的部分进行递归。这就把预期复杂度从O(nlogn)O(nlogn)O(nlogn) 降低到O(n)O(n)O(n),最坏的情况下是O(n2)O(n^2)O(n2)。

伪代码:

function quickSelect(list, left, right, k)
 if left = right return list[left]

 Select a pivotIndex between left and right

 pivotIndex := partition(list, left, right,  pivotIndex)
 if k = pivotIndex return list[k]
 else if k < pivotIndex right := pivotIndex - 1
 else left := pivotIndex + 1 
1
2
3
4
5
6
7
8
9

# 实现

# JavaScript

// partition function similar to quick sort
// Considers last element as pivot and adds elements with less value to the left and high value to the right and also changes
// the pivot position to its respective position in the final array.
function _partition(arr, low, high) {
  let pivot = arr[high], loc = low;
  for (let i = low; i <= high; i++) {
    // inserting elements of less value to the left of the pivot location
    if (arr[i] < pivot) {
      [arr[i], arr[loc]] = [arr[loc], arr[i]];
      loc++;
    }
  }
  // swapping pivot to the final pivot location
  [arr[high], arr[loc]] = [arr[loc], arr[high]];
  return loc;
}
  
// finds the kth position (of the sorted array) in a given unsorted array i.e this function can be used to find both kth largest and kth smallest element in the array.
// ASSUMPTION: all elements in arr[] are distinct
function kthSmallest(arr, low, high, k) {
  // find the partition
  let partition = _partition(arr, low, high);

  // if partition value is equal to the kth position, return value at k.
  if (partition == k - 1) return arr[partition];
  // if partition value is less than kth position, search right side of the array.
  else if (partition < k - 1) return kthSmallest(arr, partition + 1, high, k);
  // if partition value is more than kth position, search left side of the array.
  return kthSmallest(arr, low, partition - 1, k);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

或者:

/**
 * [QuickSelect](https://www.geeksforgeeks.org/quickselect-algorithm/) is an algorithm to find the kth smallest number
 *
 * Notes:
 * -QuickSelect is related to QuickSort, thus has optimal best and average
 * -case (O(n)) but unlikely poor worst case (O(n^2))
 * -This implementation uses randomly selected pivots for better performance
 *
 * @complexity: O(n) (on average )
 * @complexity: O(n^2) (worst case)
 * @flow
 */

function QuickSelect (items, kth) { // eslint-disable-line no-unused-vars
  if (kth < 1 || kth > items.length) {
    throw new RangeError('Index Out of Bound')
  }

  return RandomizedSelect(items, 0, items.length - 1, kth)
}

function RandomizedSelect (items, left, right, i) {
  if (left === right) return items[left]

  const pivotIndex = RandomizedPartition(items, left, right)
  const k = pivotIndex - left + 1

  if (i === k) return items[pivotIndex]
  if (i < k) return RandomizedSelect(items, left, pivotIndex - 1, i)

  return RandomizedSelect(items, pivotIndex + 1, right, i - k)
}

function RandomizedPartition (items, left, right) {
  const rand = getRandomInt(left, right)
  Swap(items, rand, right)
  return Partition(items, left, right)
}

function Partition (items, left, right) {
  const x = items[right]
  let pivotIndex = left - 1

  for (let j = left; j < right; j++) {
    if (items[j] <= x) {
      pivotIndex++
      Swap(items, pivotIndex, j)
    }
  }

  Swap(items, pivotIndex + 1, right)

  return pivotIndex + 1
}

function getRandomInt (min, max) {
  return Math.floor(Math.random() * (max - min + 1)) + min
}

function Swap (arr, x, y) {
  [arr[x], arr[y]] = [arr[y], arr[x]]
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

# 参考

  • Quickselect Algorithm - GeeksforGeeks (opens new window)
编辑 (opens new window)
上次更新: 2022/10/28, 17:23:56
LocalMaxPoint [局部最值]
Atbash

← LocalMaxPoint [局部最值] Atbash→

最近更新
01
0-20题解
10-31
02
本章导读
10-31
03
算法与转换:Part1
10-28
更多文章>
Theme by Vdoing | Copyright © 2022-2022 Fancy DSA | Made by Jonsam by ❤
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式