QuickSelect [快速选择]
# 介绍
Quickselect 是一种选择算法,用于寻找无序列表中第 k 个最小的元素。它与快速排序的排序算法有关。
该算法与 QuickSort 相似。不同的是,它不是对两边都进行递归(在找到支点后),而是只对包含第 k 个最小元素的部分进行递归。逻辑很简单,如果被分割的元素的索引大于 k,那么我们对左边的部分进行递归。如果索引与 k 相同,我们就找到了第 k 个最小的元素,我们就返回。如果索引小于 k,那么我们就对右边的部分进行递归。这就把预期复杂度从 降低到,最坏的情况下是。
伪代码:
function quickSelect(list, left, right, k)
if left = right return list[left]
Select a pivotIndex between left and right
pivotIndex := partition(list, left, right, pivotIndex)
if k = pivotIndex return list[k]
else if k < pivotIndex right := pivotIndex - 1
else left := pivotIndex + 1
1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
# 实现
# JavaScript
// partition function similar to quick sort
// Considers last element as pivot and adds elements with less value to the left and high value to the right and also changes
// the pivot position to its respective position in the final array.
function _partition(arr, low, high) {
let pivot = arr[high], loc = low;
for (let i = low; i <= high; i++) {
// inserting elements of less value to the left of the pivot location
if (arr[i] < pivot) {
[arr[i], arr[loc]] = [arr[loc], arr[i]];
loc++;
}
}
// swapping pivot to the final pivot location
[arr[high], arr[loc]] = [arr[loc], arr[high]];
return loc;
}
// finds the kth position (of the sorted array) in a given unsorted array i.e this function can be used to find both kth largest and kth smallest element in the array.
// ASSUMPTION: all elements in arr[] are distinct
function kthSmallest(arr, low, high, k) {
// find the partition
let partition = _partition(arr, low, high);
// if partition value is equal to the kth position, return value at k.
if (partition == k - 1) return arr[partition];
// if partition value is less than kth position, search right side of the array.
else if (partition < k - 1) return kthSmallest(arr, partition + 1, high, k);
// if partition value is more than kth position, search left side of the array.
return kthSmallest(arr, low, partition - 1, k);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
或者:
/**
* [QuickSelect](https://www.geeksforgeeks.org/quickselect-algorithm/) is an algorithm to find the kth smallest number
*
* Notes:
* -QuickSelect is related to QuickSort, thus has optimal best and average
* -case (O(n)) but unlikely poor worst case (O(n^2))
* -This implementation uses randomly selected pivots for better performance
*
* @complexity: O(n) (on average )
* @complexity: O(n^2) (worst case)
* @flow
*/
function QuickSelect (items, kth) { // eslint-disable-line no-unused-vars
if (kth < 1 || kth > items.length) {
throw new RangeError('Index Out of Bound')
}
return RandomizedSelect(items, 0, items.length - 1, kth)
}
function RandomizedSelect (items, left, right, i) {
if (left === right) return items[left]
const pivotIndex = RandomizedPartition(items, left, right)
const k = pivotIndex - left + 1
if (i === k) return items[pivotIndex]
if (i < k) return RandomizedSelect(items, left, pivotIndex - 1, i)
return RandomizedSelect(items, pivotIndex + 1, right, i - k)
}
function RandomizedPartition (items, left, right) {
const rand = getRandomInt(left, right)
Swap(items, rand, right)
return Partition(items, left, right)
}
function Partition (items, left, right) {
const x = items[right]
let pivotIndex = left - 1
for (let j = left; j < right; j++) {
if (items[j] <= x) {
pivotIndex++
Swap(items, pivotIndex, j)
}
}
Swap(items, pivotIndex + 1, right)
return pivotIndex + 1
}
function getRandomInt (min, max) {
return Math.floor(Math.random() * (max - min + 1)) + min
}
function Swap (arr, x, y) {
[arr[x], arr[y]] = [arr[y], arr[x]]
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# 参考
编辑 (opens new window)
上次更新: 2022/10/28, 17:23:56