LongestCommonSubsequence [最长公共子序列]
# 介绍
最长公共子序列(LCS)是一个在一个序列集合中(通常为两个序列)用来查找所有序列中最长子序列的问题。这与查找最长公共子串的问题不同的地方是:子序列不需要在原序列中占用连续的位置 。最长公共子序列问题是一个经典的计算机科学问题,也是数据比较(英语:data comparison)程序,比如 Diff 工具,和生物信息学应用的基础。它也被广泛地应用在版本控制,比如 Git 用来调和文件之间的改变。
最长公共子串:在计算机科学中,最长公共子串问题是寻找两个或多个已知字符串最长的子串。此问题与最长公共子序列问题的区别在于子序列不必是连续的,而子串却必须是。
定义:一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
# 实现
# JavaScript
/*
Problem:
Given two sequences, find the length of longest subsequence present in both of them.
A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous.
For example, “abc”, “abg”, “bdf”, “aeg”, ‘”acefg”, .. etc are subsequences of “abcdefg”
Our Solution:
We use recursion with tabular memoization.
Time complexity: O(M x N)
Solving each subproblem has a cost of O(1). Again, there are MxN subproblems,
and so we get a total time complexity of O(MxN).
Space complexity: O(M x N)
We need to store the answer for each of the MxN subproblems.
Improvement:
It's possible to optimize space complexity to O(min(M, N)) or time to O((N + r)log(N))
where r is the number of matches between the two sequences. Try to figure out how.
References:
[wikipedia](https://en.wikipedia.org/wiki/Longest_common_subsequence_problem)
[leetcode](https://leetcode.com/problems/longest-common-subsequence/)
*/
/**
* Finds length of the longest common subsequence among the two input string
* @param {string} str1 Input string #1
* @param {string} str2 Input string #2
* @returns {number} Length of the longest common subsequence
*/
function longestCommonSubsequence (str1, str2) {
const memo = new Array(str1.length + 1).fill(null).map(() => new Array(str2.length + 1).fill(null))
function recursive (end1, end2) {
if (end1 === -1 || end2 === -1) return 0
if (memo[end1][end2] !== null) return memo[end1][end2]
if (str1[end1] === str2[end2]) return memo[end1][end2] = 1 + recursive(end1 - 1, end2 - 1)
return memo[end1][end2] = Math.max(recursive(end1 - 1, end2), recursive(end1, end2 - 1))
}
return recursive(str1.length - 1, str2.length - 1)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# 参考
编辑 (opens new window)
上次更新: 2022/10/25, 20:46:09