BinaryExponentiation [二分求幂]
# 介绍
在数学和程序设计中,平方求幂(英语:exponentiating by squaring)或快速幂是快速计算一个数(或更一般地说,一个半群的元素,如多项式或方阵)的大正整数乘幂的一般方法。这些算法可以非常通用,例如用在模算数或矩阵幂。对于通常使用加性表示法的半群,如密码学中使用的椭圆曲线,这种方法也称为 double-and-add。
# 实现
# JavaScript
迭代法:
// To calculate x^n i.e. exponent(x, n) in O(log n) time in iterative way
// n is an integer and n >= 0
// Explanation: https://en.wikipedia.org/wiki/Exponentiation_by_squaring
// Examples:
// 2^3 = 8
// 5^0 = 1
// Uses the fact that
// exponent(x, n)
// = exponent(x*x, floor(n/2)) ; if n is even
// = x*exponent(x*x, floor(n/2)) ; if n is odd
const exponent = (x, n) => {
let answer = 1
while (n > 0) {
if (n % 2 !== 0) answer *= x
n = Math.floor(n / 2)
if (n > 0) x *= x
}
return answer
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
递归法:
/*
Modified from:
https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py
Explanation:
https://en.wikipedia.org/wiki/Exponentiation_by_squaring
*/
const binaryExponentiation = (a, n) => {
// input: a: int, n: int
// returns: a^n: int
if (n === 0) {
return 1
} else if (n % 2 === 1) {
return binaryExponentiation(a, n - 1) * a
} else {
const b = binaryExponentiation(a, n / 2)
return b * b
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# 参考
编辑 (opens new window)
上次更新: 2022/10/18, 22:58:49