Fancy DSA Fancy DSA
数据结构
算法
LeetCode
  • 关于
  • 导航 (opens new window)
  • 分类
  • 标签
  • 归档
设计模式 (opens new window)
博客 (opens new window)
GitHub (opens new window)

Jonsam NG

想的更多,也要想的更远
数据结构
算法
LeetCode
  • 关于
  • 导航 (opens new window)
  • 分类
  • 标签
  • 归档
设计模式 (opens new window)
博客 (opens new window)
GitHub (opens new window)
  • 开始上手
  • Plan 计划
  • Roadmap 路线
  • 算法简介
  • Sort 排序

  • Search 搜索

  • Recursive 递归

    • BinaryEquivalent [二进制转化]
    • BinarySearch [二分搜索]
    • EuclideanGCD [辗转相除法]
    • Factorial [阶乘]
    • FibonacciNumberRecursive [斐波那契数]
    • FloodFill [Flood Fill算法]
      • 介绍
      • 原理
      • 视频
      • 实现
      • 参考
    • KochSnowflake [科赫雪花算法]
    • Palindrome [回文]
    • TowerOfHanoi [汉诺塔]
  • Graph 图

  • Tree 树

  • Math 数学

  • Hash 哈希

  • String 字符串

  • BitManipulation 位操纵

  • Backtracking 回溯

  • DynamicProgramming 动态规划

  • Cache 缓存

  • Array 数组

  • Ciphers 密码学

  • Conversions 转换

  • ProjectEuler 欧拉计划

  • 其他

  • 算法
  • Recursive 递归
jonsam
2022-05-01
目录

FloodFill [Flood Fill算法]

# 介绍

Flood fill 算法是从一个区域中提取若干个连通的点与其他相邻区域区分开(或分别染成不同颜色)的经典算法。因为其思路类似洪水从一个区域扩散到所有能到达的区域而得名。

# 原理

Flood fill 算法接受三个参数:起始节点,目标颜色和替换颜色。算法遍历所有的节点以寻找和起始节点相连的节点(通过一条目标颜色的路径相连),然后 改变他们的颜色为替换颜色。目前有许多 flood-fill 算法的构建方式,但是他们都显示或隐式的使用队列或者栈。根据我们是否考虑当前节点对角线方向的节点,算法分为四路算法(不考虑对角线方向的节点)和八路算法(考虑对角线方向的节点)。

四路算法:

Recursive_Flood_Fill_8_(aka).gif (144×144)

八路算法:

Recursive_Flood_Fill_8_(aka).gif (144×144)

# 视频

# 实现

# JavaScript

/**
 * Flood fill.
 *
 * Flood fill, also called seed fill, is an algorithm that determines and alters the area connected to a given node in a
 * multi-dimensional array with some matching attribute. It is used in the "bucket" fill tool of paint programs to fill
 * connected, similarly-colored areas with a different color.
 *
 * (description adapted from https://en.wikipedia.org/wiki/Flood_fill)
 * @see https://www.techiedelight.com/flood-fill-algorithm/
 */

const neighbors = [[-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1, -1], [1, 0], [1, 1]]

/**
 * Implements the flood fill algorithm through a breadth-first approach using a queue.
 *
 * @param rgbData The image to which the algorithm is applied.
 * @param location The start location on the image.
 * @param targetColor The old color to be replaced.
 * @param replacementColor The new color to replace the old one.
 */
export function breadthFirstSearch (rgbData, location, targetColor, replacementColor) {
  if (location[0] < 0 ||
    location[0] >= rgbData.length ||
    location[1] < 0 ||
    location[1] >= rgbData[0].length) {
    throw new Error('location should point to a pixel within the rgbData')
  }

  const queue = []
  queue.push(location)

  while (queue.length > 0) {
    breadthFirstFill(rgbData, location, targetColor, replacementColor, queue)
  }
}

/**
 * Implements the flood fill algorithm through a depth-first approach using recursion.
 *
 * @param rgbData The image to which the algorithm is applied.
 * @param location The start location on the image.
 * @param targetColor The old color to be replaced.
 * @param replacementColor The new color to replace the old one.
 */
export function depthFirstSearch (rgbData, location, targetColor, replacementColor) {
  if (location[0] < 0 ||
    location[0] >= rgbData.length ||
    location[1] < 0 ||
    location[1] >= rgbData[0].length) {
    throw new Error('location should point to a pixel within the rgbData')
  }

  depthFirstFill(rgbData, location, targetColor, replacementColor)
}

/**
 * Utility-function to implement the breadth-first loop.
 *
 * @param rgbData The image to which the algorithm is applied.
 * @param location The start location on the image.
 * @param targetColor The old color to be replaced.
 * @param replacementColor The new color to replace the old one.
 * @param queue The locations that still need to be visited.
 */
function breadthFirstFill (rgbData, location, targetColor, replacementColor, queue) {
  const currentLocation = queue[0]
  queue.shift()

  if (rgbData[currentLocation[0]][currentLocation[1]] === targetColor) {
    rgbData[currentLocation[0]][currentLocation[1]] = replacementColor

    for (let i = 0; i < neighbors.length; i++) {
      const x = currentLocation[0] + neighbors[i][0]
      const y = currentLocation[1] + neighbors[i][1]
      if (x >= 0 && x < rgbData.length && y >= 0 && y < rgbData[0].length) {
        queue.push([x, y])
      }
    }
  }
}

/**
 * Utility-function to implement the depth-first loop.
 *
 * @param rgbData The image to which the algorithm is applied.
 * @param location The start location on the image.
 * @param targetColor The old color to be replaced.
 * @param replacementColor The new color to replace the old one.
 */
function depthFirstFill (rgbData, location, targetColor, replacementColor) {
  if (rgbData[location[0]][location[1]] === targetColor) {
    rgbData[location[0]][location[1]] = replacementColor

    for (let i = 0; i < neighbors.length; i++) {
      const x = location[0] + neighbors[i][0]
      const y = location[1] + neighbors[i][1]
      if (x >= 0 && x < rgbData.length && y >= 0 && y < rgbData[0].length) {
        depthFirstFill(rgbData, [x, y], targetColor, replacementColor)
      }
    }
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

# 参考

  • Flood fill - 维基百科,自由的百科全书 (opens new window)
  • Flood fill - Wikipedia (opens new window)
编辑 (opens new window)
上次更新: 2022/10/17, 12:47:34
FibonacciNumberRecursive [斐波那契数]
KochSnowflake [科赫雪花算法]

← FibonacciNumberRecursive [斐波那契数] KochSnowflake [科赫雪花算法]→

最近更新
01
0-20题解
10-31
02
本章导读
10-31
03
算法与转换:Part1
10-28
更多文章>
Theme by Vdoing | Copyright © 2022-2022 Fancy DSA | Made by Jonsam by ❤
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式