Fancy DSA Fancy DSA
数据结构
算法
LeetCode
  • 关于
  • 导航 (opens new window)
  • 分类
  • 标签
  • 归档
设计模式 (opens new window)
博客 (opens new window)
GitHub (opens new window)

Jonsam NG

想的更多,也要想的更远
数据结构
算法
LeetCode
  • 关于
  • 导航 (opens new window)
  • 分类
  • 标签
  • 归档
设计模式 (opens new window)
博客 (opens new window)
GitHub (opens new window)
  • 开始上手
  • Plan 计划
  • Roadmap 路线
  • 算法简介
  • Sort 排序

  • Search 搜索

  • Recursive 递归

    • BinaryEquivalent [二进制转化]
    • BinarySearch [二分搜索]
    • EuclideanGCD [辗转相除法]
    • Factorial [阶乘]
    • FibonacciNumberRecursive [斐波那契数]
    • FloodFill [Flood Fill算法]
    • KochSnowflake [科赫雪花算法]
      • 介绍
      • 实现
      • 测试
      • 扩展
      • 参考
    • Palindrome [回文]
    • TowerOfHanoi [汉诺塔]
  • Graph 图

  • Tree 树

  • Math 数学

  • Hash 哈希

  • String 字符串

  • BitManipulation 位操纵

  • Backtracking 回溯

  • DynamicProgramming 动态规划

  • Cache 缓存

  • Array 数组

  • Ciphers 密码学

  • Conversions 转换

  • ProjectEuler 欧拉计划

  • 其他

  • 算法
  • Recursive 递归
jonsam
2022-05-01
目录

KochSnowflake [科赫雪花算法]

# 介绍

科赫曲线(英语:Koch curve)是一种分形。其形态似雪花,又称科赫雪花(Koch snowflake)、科赫星(Koch star)、科赫岛(Koch island)或雪花曲线(Snowflake curve)。

给定线段 AB,科赫曲线可以由以下步骤生成:

  • 将线段分成三等份(AC,CD,DB)。
  • 以 CD 为底,向外(内外随意)画一个等边三角形 DMC。
  • 将线段 CD 移去。
  • 分别对 AC,CM,MD,DB 重复 1~3。

科赫雪花是以等边三角形三边生成的科赫曲线组成的。科赫雪花的面积是 23(s2)5\frac{2\sqrt{3}(s^2)}{5}523​(s2)​,其中sss 是原来三角形的边长。每条科赫曲线的长度是无限大,它是连续而无处可微的曲线。

image

# 实现

# JavaScript

/**
 * The Koch snowflake is a fractal curve and one of the earliest fractals to have been described.
 *
 * The Koch snowflake can be built up iteratively, in a sequence of stages. The first stage is an equilateral triangle,
 * and each successive stage is formed by adding outward bends to each side of the previous stage, making smaller
 * equilateral triangles. This can be achieved through the following steps for each line:
 * 1. divide the line segment into three segments of equal length.
 * 2. draw an equilateral triangle that has the middle segment from step 1 as its base and points outward.
 * 3. remove the line segment that is the base of the triangle from step 2.
 *
 * (description adapted from https://en.wikipedia.org/wiki/Koch_snowflake)
 * (for a more detailed explanation and an implementation in the Processing language, see
 * https://natureofcode.com/book/chapter-8-fractals/ #84-the-koch-curve-and-the-arraylist-technique).
 */

/** Class to handle the vector calculations. */
export class Vector2 {
  constructor (x, y) {
    this.x = x
    this.y = y
  }

  /**
   * Vector addition
   *
   * @param vector The vector to be added.
   * @returns The sum-vector.
   */
  add (vector) {
    const x = this.x + vector.x
    const y = this.y + vector.y
    return new Vector2(x, y)
  }

  /**
   * Vector subtraction
   *
   * @param vector The vector to be subtracted.
   * @returns The difference-vector.
   */
  subtract (vector) {
    const x = this.x - vector.x
    const y = this.y - vector.y
    return new Vector2(x, y)
  }

  /**
   * Vector scalar multiplication
   *
   * @param scalar The factor by which to multiply the vector.
   * @returns The scaled vector.
   */
  multiply (scalar) {
    const x = this.x * scalar
    const y = this.y * scalar
    return new Vector2(x, y)
  }

  /**
   * Vector rotation (see https://en.wikipedia.org/wiki/Rotation_matrix)
   *
   * @param angleInDegrees The angle by which to rotate the vector.
   * @returns The rotated vector.
   */
  rotate (angleInDegrees) {
    const radians = angleInDegrees * Math.PI / 180
    const ca = Math.cos(radians)
    const sa = Math.sin(radians)
    const x = ca * this.x - sa * this.y
    const y = sa * this.x + ca * this.y
    return new Vector2(x, y)
  }
}

/**
 * Go through the number of iterations determined by the argument "steps".
 *
 * Be careful with high values (above 5) since the time to calculate increases exponentially.
 *
 * @param initialVectors The vectors composing the shape to which the algorithm is applied.
 * @param steps The number of iterations.
 * @returns The transformed vectors after the iteration-steps.
 */
export function iterate (initialVectors, steps) {
  let vectors = initialVectors
  for (let i = 0; i < steps; i++) {
    vectors = iterationStep(vectors)
  }

  return vectors
}

/**
 * Loops through each pair of adjacent vectors.
 *
 * Each line between two adjacent vectors is divided into 4 segments by adding 3 additional vectors in-between the
 * original two vectors. The vector in the middle is constructed through a 60 degree rotation so it is bent outwards.
 *
 * @param vectors The vectors composing the shape to which the algorithm is applied.
 * @returns The transformed vectors after the iteration-step.
 */
function iterationStep (vectors) {
  const newVectors = []
  for (let i = 0; i < vectors.length - 1; i++) {
    const startVector = vectors[i]
    const endVector = vectors[i + 1]
    newVectors.push(startVector)
    const differenceVector = endVector.subtract(startVector).multiply(1 / 3)
    newVectors.push(startVector.add(differenceVector))
    newVectors.push(startVector.add(differenceVector).add(differenceVector.rotate(60)))
    newVectors.push(startVector.add(differenceVector.multiply(2)))
  }

  newVectors.push(vectors[vectors.length - 1])
  return newVectors
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

# 测试

import { Vector2, iterate } from './KochSnowflake'

/**
 * Method to render the Koch snowflake to a canvas.
 *
 * @param canvasWidth The width of the canvas.
 * @param steps The number of iterations.
 * @returns The canvas of the rendered Koch snowflake.
 */
function getKochSnowflake (canvasWidth = 600, steps = 5) {
  if (canvasWidth <= 0) {
    throw new Error('canvasWidth should be greater than zero')
  }

  const offsetX = canvasWidth / 10.0
  const offsetY = canvasWidth / 3.7
  const vector1 = new Vector2(offsetX, offsetY)
  const vector2 = new Vector2(canvasWidth / 2, Math.sin(Math.PI / 3) * canvasWidth * 0.8 + offsetY)
  const vector3 = new Vector2(canvasWidth - offsetX, offsetY)
  const initialVectors = []
  initialVectors.push(vector1)
  initialVectors.push(vector2)
  initialVectors.push(vector3)
  initialVectors.push(vector1)
  const vectors = iterate(initialVectors, steps)
  return drawToCanvas(vectors, canvasWidth, canvasWidth)
}

/**
 * Utility-method to render the Koch snowflake to a canvas.
 *
 * @param vectors The vectors defining the edges to be rendered.
 * @param canvasWidth The width of the canvas.
 * @param canvasHeight The height of the canvas.
 * @returns The canvas of the rendered edges.
 */
function drawToCanvas (vectors, canvasWidth, canvasHeight) {
  const canvas = document.createElement('canvas')
  canvas.width = canvasWidth
  canvas.height = canvasHeight

  // Draw the edges
  const ctx = canvas.getContext('2d')
  ctx.beginPath()
  ctx.moveTo(vectors[0].x, vectors[0].y)
  for (let i = 1; i < vectors.length; i++) {
    ctx.lineTo(vectors[i].x, vectors[i].y)
  }
  ctx.stroke()

  return canvas
}

// plot the results if the script is executed in a browser with a window-object
if (typeof window !== 'undefined') {
  const canvas = getKochSnowflake()
  document.body.append(canvas)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

# 扩展

  • “科赫雪花” 是什么?为什么它的面积有限,周长却无限大?

# 参考

  • Koch snowflake - Wikipedia (opens new window)
  • 科赫曲线 - 维基百科,自由的百科全书 (opens new window)
编辑 (opens new window)
上次更新: 2022/10/17, 12:47:34
FloodFill [Flood Fill算法]
Palindrome [回文]

← FloodFill [Flood Fill算法] Palindrome [回文]→

最近更新
01
0-20题解
10-31
02
本章导读
10-31
03
算法与转换:Part1
10-28
更多文章>
Theme by Vdoing | Copyright © 2022-2022 Fancy DSA | Made by Jonsam by ❤
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式