KochSnowflake [科赫雪花算法]
# 介绍
科赫曲线(英语:Koch curve)是一种分形。其形态似雪花,又称科赫雪花(Koch snowflake)、科赫星(Koch star)、科赫岛(Koch island)或雪花曲线(Snowflake curve)。
给定线段 AB,科赫曲线可以由以下步骤生成:
- 将线段分成三等份(AC,CD,DB)。
- 以 CD 为底,向外(内外随意)画一个等边三角形 DMC。
- 将线段 CD 移去。
- 分别对 AC,CM,MD,DB 重复 1~3。
科赫雪花是以等边三角形三边生成的科赫曲线组成的。科赫雪花的面积是 ,其中 是原来三角形的边长。每条科赫曲线的长度是无限大,它是连续而无处可微的曲线。
# 实现
# JavaScript
/**
* The Koch snowflake is a fractal curve and one of the earliest fractals to have been described.
*
* The Koch snowflake can be built up iteratively, in a sequence of stages. The first stage is an equilateral triangle,
* and each successive stage is formed by adding outward bends to each side of the previous stage, making smaller
* equilateral triangles. This can be achieved through the following steps for each line:
* 1. divide the line segment into three segments of equal length.
* 2. draw an equilateral triangle that has the middle segment from step 1 as its base and points outward.
* 3. remove the line segment that is the base of the triangle from step 2.
*
* (description adapted from https://en.wikipedia.org/wiki/Koch_snowflake)
* (for a more detailed explanation and an implementation in the Processing language, see
* https://natureofcode.com/book/chapter-8-fractals/ #84-the-koch-curve-and-the-arraylist-technique).
*/
/** Class to handle the vector calculations. */
export class Vector2 {
constructor (x, y) {
this.x = x
this.y = y
}
/**
* Vector addition
*
* @param vector The vector to be added.
* @returns The sum-vector.
*/
add (vector) {
const x = this.x + vector.x
const y = this.y + vector.y
return new Vector2(x, y)
}
/**
* Vector subtraction
*
* @param vector The vector to be subtracted.
* @returns The difference-vector.
*/
subtract (vector) {
const x = this.x - vector.x
const y = this.y - vector.y
return new Vector2(x, y)
}
/**
* Vector scalar multiplication
*
* @param scalar The factor by which to multiply the vector.
* @returns The scaled vector.
*/
multiply (scalar) {
const x = this.x * scalar
const y = this.y * scalar
return new Vector2(x, y)
}
/**
* Vector rotation (see https://en.wikipedia.org/wiki/Rotation_matrix)
*
* @param angleInDegrees The angle by which to rotate the vector.
* @returns The rotated vector.
*/
rotate (angleInDegrees) {
const radians = angleInDegrees * Math.PI / 180
const ca = Math.cos(radians)
const sa = Math.sin(radians)
const x = ca * this.x - sa * this.y
const y = sa * this.x + ca * this.y
return new Vector2(x, y)
}
}
/**
* Go through the number of iterations determined by the argument "steps".
*
* Be careful with high values (above 5) since the time to calculate increases exponentially.
*
* @param initialVectors The vectors composing the shape to which the algorithm is applied.
* @param steps The number of iterations.
* @returns The transformed vectors after the iteration-steps.
*/
export function iterate (initialVectors, steps) {
let vectors = initialVectors
for (let i = 0; i < steps; i++) {
vectors = iterationStep(vectors)
}
return vectors
}
/**
* Loops through each pair of adjacent vectors.
*
* Each line between two adjacent vectors is divided into 4 segments by adding 3 additional vectors in-between the
* original two vectors. The vector in the middle is constructed through a 60 degree rotation so it is bent outwards.
*
* @param vectors The vectors composing the shape to which the algorithm is applied.
* @returns The transformed vectors after the iteration-step.
*/
function iterationStep (vectors) {
const newVectors = []
for (let i = 0; i < vectors.length - 1; i++) {
const startVector = vectors[i]
const endVector = vectors[i + 1]
newVectors.push(startVector)
const differenceVector = endVector.subtract(startVector).multiply(1 / 3)
newVectors.push(startVector.add(differenceVector))
newVectors.push(startVector.add(differenceVector).add(differenceVector.rotate(60)))
newVectors.push(startVector.add(differenceVector.multiply(2)))
}
newVectors.push(vectors[vectors.length - 1])
return newVectors
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# 测试
import { Vector2, iterate } from './KochSnowflake'
/**
* Method to render the Koch snowflake to a canvas.
*
* @param canvasWidth The width of the canvas.
* @param steps The number of iterations.
* @returns The canvas of the rendered Koch snowflake.
*/
function getKochSnowflake (canvasWidth = 600, steps = 5) {
if (canvasWidth <= 0) {
throw new Error('canvasWidth should be greater than zero')
}
const offsetX = canvasWidth / 10.0
const offsetY = canvasWidth / 3.7
const vector1 = new Vector2(offsetX, offsetY)
const vector2 = new Vector2(canvasWidth / 2, Math.sin(Math.PI / 3) * canvasWidth * 0.8 + offsetY)
const vector3 = new Vector2(canvasWidth - offsetX, offsetY)
const initialVectors = []
initialVectors.push(vector1)
initialVectors.push(vector2)
initialVectors.push(vector3)
initialVectors.push(vector1)
const vectors = iterate(initialVectors, steps)
return drawToCanvas(vectors, canvasWidth, canvasWidth)
}
/**
* Utility-method to render the Koch snowflake to a canvas.
*
* @param vectors The vectors defining the edges to be rendered.
* @param canvasWidth The width of the canvas.
* @param canvasHeight The height of the canvas.
* @returns The canvas of the rendered edges.
*/
function drawToCanvas (vectors, canvasWidth, canvasHeight) {
const canvas = document.createElement('canvas')
canvas.width = canvasWidth
canvas.height = canvasHeight
// Draw the edges
const ctx = canvas.getContext('2d')
ctx.beginPath()
ctx.moveTo(vectors[0].x, vectors[0].y)
for (let i = 1; i < vectors.length; i++) {
ctx.lineTo(vectors[i].x, vectors[i].y)
}
ctx.stroke()
return canvas
}
// plot the results if the script is executed in a browser with a window-object
if (typeof window !== 'undefined') {
const canvas = getKochSnowflake()
document.body.append(canvas)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# 扩展
- “科赫雪花” 是什么?为什么它的面积有限,周长却无限大?
# 参考
编辑 (opens new window)
上次更新: 2022/10/17, 12:47:34