BinarySearch [二分搜索]
# 介绍
在计算机科学中,二分查找算法(英语:binary search algorithm),也称折半搜索算法(英语:half-interval search algorithm)、对数搜索算法(英语:logarithmic search algorithm),是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。
除非输入数据数量很少,否则二分查找算法比线性搜索更快,但数组必须事先被排序。尽管一些特定的、为了快速搜索而设计的数据结构更有效(比如哈希表),二分查找算法应用面更广。
二分查找算法有许多种变种。比如分散层叠可以提升在多个数组中对同一个数值的搜索的速度。分散层叠有效的解决了计算几何学和其他领域的许多搜索问题。指数搜索将二分查找算法拓宽到无边界的列表。二叉搜索树和 B 树数据结构就是基于二分查找算法的。
# 原理
二分搜索只对有序数组有效。二分搜索先比较数组中比特素和目标值。如果目标值与中比特素相等,则返回其在数组中的位置;如果目标值小于中比特素,则搜索继续在前半部分的数组中进行。如果目标值大于中比特素,则搜索继续在数组上部分进行。由此,算法每次排除掉至少一半的待查数组。
# 复杂度
- 平均时间复杂度:
- 最坏时间复杂度:
- 最优时间复杂度:
- 空间复杂度:迭代:;递归:
# 动画
# 实现
# JavaScript
/* Binary Search: https://en.wikipedia.org/wiki/Binary_search_algorithm
*
* Search a sorted array by repeatedly dividing the search interval
* in half. Begin with an interval covering the whole array. If the value of the
* search key is less than the item in the middle of the interval, narrow the interval
* to the lower half. Otherwise narrow it to the upper half. Repeatedly check until the
* value is found or the interval is empty.
*/
function binarySearchRecursive (arr, x, low = 0, high = arr.length - 1) {
const mid = Math.floor(low + (high - low) / 2)
if (high >= low) {
if (arr[mid] === x) {
// item found => return its index
return mid
}
if (x < arr[mid]) {
// arr[mid] is an upper bound for x, so if x is in arr => low <= x < mid
return binarySearchRecursive(arr, x, low, mid - 1)
} else {
// arr[mid] is a lower bound for x, so if x is in arr => mid < x <= high
return binarySearchRecursive(arr, x, mid + 1, high)
}
} else {
// if low > high => we have searched the whole array without finding the item
return -1
}
}
function binarySearchIterative (arr, x, low = 0, high = arr.length - 1) {
while (high >= low) {
const mid = Math.floor(low + (high - low) / 2)
if (arr[mid] === x) {
// item found => return its index
return mid
}
if (x < arr[mid]) {
// arr[mid] is an upper bound for x, so if x is in arr => low <= x < mid
high = mid - 1
} else {
// arr[mid] is a lower bound for x, so if x is in arr => mid < x <= high
low = mid + 1
}
}
// if low > high => we have searched the whole array without finding the item
return -1
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# 参考
编辑 (opens new window)
上次更新: 2022/10/10, 21:03:42