Fancy DSA Fancy DSA
数据结构
算法
LeetCode
  • 关于
  • 导航 (opens new window)
  • 分类
  • 标签
  • 归档
设计模式 (opens new window)
博客 (opens new window)
GitHub (opens new window)

Jonsam NG

想的更多,也要想的更远
数据结构
算法
LeetCode
  • 关于
  • 导航 (opens new window)
  • 分类
  • 标签
  • 归档
设计模式 (opens new window)
博客 (opens new window)
GitHub (opens new window)
  • 开始上手
  • Plan 计划
  • Roadmap 路线
  • 算法简介
  • Sort 排序

  • Search 搜索

  • Recursive 递归

  • Graph 图

  • Tree 树

  • Math 数学

  • Hash 哈希

  • String 字符串

    • AlphaNumericPalindrome [回文串]
    • AlternativeStringArrange [交替合并字符串]
    • BoyerMoore [博耶-穆尔字符串搜索算法、BM 算法]
    • CheckAnagram [易位构词]
    • NamingConvention [命名规则]
    • CheckExceeding [Exceeding words]
    • CheckPangram [全字母句]
    • CheckWordOccurrence [单词计数]
    • CountVowels [元音字母计数]
    • CreatePermutations [全排列]
    • DiceCoefficient [Dice系数]
    • FormatPhoneNumber [格式化电话号码]
    • GenerateGUID [生成GUID、UUID]
    • HammingDistance [汉明距离]
    • KMPPatternSearching [KMP字符串匹配]
      • 介绍
      • 实现
      • 参考
  • BitManipulation 位操纵

  • Backtracking 回溯

  • DynamicProgramming 动态规划

  • Cache 缓存

  • Array 数组

  • Ciphers 密码学

  • Conversions 转换

  • ProjectEuler 欧拉计划

  • 其他

  • 算法
  • String 字符串
jonsam
2022-09-26
目录

KMPPatternSearching [KMP字符串匹配]

# 介绍

在计算机科学中,Knuth-Morris-Pratt 字符串查找算法(简称为 KMP 算法)可在一个字符串 S 内查找一个词 W 的出现位置。一个词在不匹配时本身就包含足够的信息来确定下一个匹配可能的开始位置,此算法利用这一特性以避免重新检查先前配对的字符。

# 实现

# JavaScript

// Implementing KMP Search Algorithm to search all the instances of pattern in
// given text
// Reference Book: Introduction to Algorithms, CLRS

// Explanation: https://www.topcoder.com/community/competitive-programming/tutorials/introduction-to-string-searching-algorithms/

const computeLPS = (pattern) => {
  const lps = Array(pattern.length)
  lps[0] = 0
  for (let i = 1; i < pattern.length; i++) {
    let matched = lps[i - 1]
    while (matched > 0 && pattern[i] !== pattern[matched]) {
      matched = lps[matched - 1]
    }
    if (pattern[i] === pattern[matched]) {
      matched++
    }
    lps[i] = matched
  }
  return lps
}

/**
 * Returns all indices where pattern starts in text
 * @param {*} text a big text in which pattern string is to find
 * @param {*} pattern the string to find
 */
const KMPSearch = (text, pattern) => {
  if (!pattern || !text) {
    return [] // no results
  }

  // lps[i] = length of proper prefix of pattern[0]...pattern[i-1]
  //          which is also proper suffix of it
  const lps = computeLPS(pattern)
  const result = []

  let matched = 0
  for (let i = 0; i < text.length; i++) {
    while (matched > 0 && text[i] !== pattern[matched]) {
      matched = lps[matched - 1]
    }
    if (text[i] === pattern[matched]) {
      matched++
    }
    if (matched === pattern.length) {
      result.push(i - pattern.length + 1)
      matched = lps[matched - 1]
    }
  }

  return result
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

# 参考

  • Knuth–Morris–Pratt algorithm - Wikiwand (opens new window)
  • KMP 算法 - Wikiwand (opens new window)
  • 字符串匹配的 KMP 算法 - 阮一峰的网络日志 (opens new window)
编辑 (opens new window)
上次更新: 2022/10/20, 21:49:42
HammingDistance [汉明距离]
BinaryCountSetBits [二进制串数1]

← HammingDistance [汉明距离] BinaryCountSetBits [二进制串数1]→

最近更新
01
0-20题解
10-31
02
本章导读
10-31
03
算法与转换:Part1
10-28
更多文章>
Theme by Vdoing | Copyright © 2022-2022 Fancy DSA | Made by Jonsam by ❤
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式