BinarySearchTree [二叉搜索树]
# 介绍
二叉查找树(英语:Binary Search Tree),也称为二叉搜索树、有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树:
- 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
- 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
- 任意节点的左、右子树也分别为二叉查找树;
二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。为。二叉查找树是基础性数据结构,用于构建更为抽象的数据结构,如集合、多重集、关联数组等。
二叉查找树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉查找树的存储结构。中序遍历二叉查找树可得到一个关键字的有序序列,一个无序序列可以透过建构一棵二叉查找树变成一个有序序列,建构树的过程即为对无序序列进行查找的过程。每次插入的新的结点都是二叉查找树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索、插入、删除的复杂度等于树高,期望,最坏退化为偏斜二元树。对于可能形成偏斜二元树的问题可以经由树高改良后的平衡树将搜寻、插入、删除的时间复杂度都维持在,如 AVL 树、红黑树等。
# 实现
# JavaScript
class BinarySearchTreeNode {
constructor(key, value) {
this._key = key;
this._value = value;
this._left = null;
this._right = null;
this._parent = null;
}
/**
* @public
* @param {number|string}
* @returns {BinarySearchTreeNode}
*/
setKey(key) {
this._key = key;
return this;
}
/**
* @public
* @return {number|string}
*/
getKey() {
return this._key;
}
/**
* @public
* @param {any} value
* @returns {BinarySearchTreeNode}
*/
setValue(value) {
this._value = value;
return this;
}
/**
* @public
* @return {any}
*/
getValue() {
return this._value;
}
/**
* @public
* @param {BinarySearchTreeNode|null} left
* @returns {BinarySearchTreeNode}
*/
setLeft(left) {
if (left && !(left instanceof BinarySearchTreeNode)) {
throw new Error('setLeft expects a BinarySearchTreeNode or null');
}
this._left = left || null;
return this;
}
/**
* @public
* @return {BinarySearchTreeNode}
*/
getLeft() {
return this._left;
}
/**
* @public
* @return {boolean}
*/
hasLeft() {
return this._left instanceof BinarySearchTreeNode;
}
/**
* @public
* @param {BinarySearchTreeNode|null} right
* @returns {BinarySearchTreeNode}
*/
setRight(right) {
if (right && !(right instanceof BinarySearchTreeNode)) {
throw new Error('setRight expects a BinarySearchTreeNode or null');
}
this._right = right || null;
return this;
}
/**
* @public
* @return {BinarySearchTreeNode}
*/
getRight() {
return this._right;
}
/**
* @public
* @return {boolean}
*/
hasRight() {
return this._right instanceof BinarySearchTreeNode;
}
/**
* @public
* @param {BinarySearchTreeNode} parent
* @returns {BinarySearchTreeNode}
*/
setParent(parent) {
if (parent && !(parent instanceof BinarySearchTreeNode)) {
throw new Error('setParent expects a BinarySearchTreeNode or null');
}
this._parent = parent || null;
return this;
}
/**
* @public
* @return {BinarySearchTreeNode}
*/
getParent() {
return this._parent;
}
/**
* @public
* @return {boolean}
*/
hasParent() {
return this._parent instanceof BinarySearchTreeNode;
}
/**
* @public
* @return {boolean}
*/
isRoot() {
return this._parent === null;
}
/**
* @public
* @return {boolean}
*/
isLeaf() {
return !this.hasLeft() && !this.hasRight();
}
}
class BinarySearchTree {
constructor() {
this._root = null;
this._count = 0;
}
/**
* Inserts a node with a key/value into the tree
* @public
* @param {number|string} key
* @param {any} value
* @return {BinarySearchTree}
*/
insert(key, value) {
const newNode = new BinarySearchTreeNode(key, value);
const insertRecursive = (current) => {
if (key < current.getKey()) {
if (current.hasLeft()) {
insertRecursive(current.getLeft());
} else {
current.setLeft(newNode.setParent(current));
this._count += 1;
}
} else if (key > current.getKey()) {
if (current.hasRight()) {
insertRecursive(current.getRight());
} else {
current.setRight(newNode.setParent(current));
this._count += 1;
}
} else {
current.setValue(value);
}
};
if (this._root === null) {
this._root = newNode;
this._count += 1;
} else {
insertRecursive(this._root);
}
return newNode;
}
/**
* Checks if a value exists in the tree by its key
* @public
* @param {number|string} key
* @return {boolean}
*/
has(key) {
const hasRecursive = (current) => {
if (current === null) {
return false;
}
if (key === current.getKey()) {
return true;
}
if (key < current.getKey()) {
return hasRecursive(current.getLeft());
}
return hasRecursive(current.getRight());
};
return hasRecursive(this._root);
}
/**
* Finds a node by its key
* @public
* @param {number|string} key
* @return {BinarySearchTreeNode}
*/
find(key) {
const findRecursive = (current) => {
if (current === null) {
return null;
}
if (key === current.getKey()) {
return current;
}
if (key < current.getKey()) {
return findRecursive(current.getLeft());
}
return findRecursive(current.getRight());
};
return findRecursive(this._root);
}
/**
* Finds the node with max key (most right) in the tree
* @public
* @param {BinarySearchTreeNode} [current]
* @return {BinarySearchTreeNode}
*/
max(current = this._root) {
if (current === null) {
return null;
}
if (current.hasRight()) {
return this.max(current.getRight());
}
return current;
}
/**
* Finds the node with min key (most left) in the tree
* @public
* @param {BinarySearchTreeNode} [current]
* @return {BinarySearchTreeNode}
*/
min(current = this._root) {
if (current === null) {
return null;
}
if (current.hasLeft()) {
return this.min(current.getLeft());
}
return current;
}
/**
* Returns the node with the biggest key less or equal to k
* @public
* @param {number|string} k
* @param {boolean} includeEqual
* @return {BinarySearchTreeNode|null}
*/
lowerBound(k, includeEqual = true) {
let lowerBound = null;
const lowerBoundRecursive = (current) => {
if (current === null) {
return lowerBound;
}
const currentKey = current.getKey();
if (currentKey < k || (includeEqual && currentKey === k)) {
if (lowerBound === null || lowerBound.getKey() <= currentKey) {
lowerBound = current;
}
return lowerBoundRecursive(current.getRight());
}
return lowerBoundRecursive(current.getLeft());
};
return lowerBoundRecursive(this._root);
}
/**
* delegate to lowerBound
* @public
* @param {number|string} k
* @param {boolean} includeEqual
* @return {BinarySearchTreeNode|null}
*/
floor(k, includeEqual = true) {
return this.lowerBound(k, includeEqual);
}
/**
* Returns the node with the smallest key bigger or equal k
* @public
* @param {number|string} k
* @param {boolean} includeEqual
* @return {BinarySearchTreeNode|null}
*/
upperBound(k, includeEqual = true) {
let upperBound = null;
const upperBoundRecursive = (current) => {
if (current === null) {
return upperBound;
}
const currentKey = current.getKey();
if (currentKey > k || (includeEqual && currentKey === k)) {
if (upperBound === null || upperBound.getKey() >= currentKey) {
upperBound = current;
}
return upperBoundRecursive(current.getLeft());
}
return upperBoundRecursive(current.getRight());
};
return upperBoundRecursive(this._root);
}
/**
* delegate to upperBound
* @public
* @param {number|string} k
* @param {boolean} includeEqual
* @return {BinarySearchTreeNode|null}
*/
ceil(k, includeEqual = true) {
return this.upperBound(k, includeEqual);
}
/**
* Returns the root node
* @public
* @return {BinarySearchTreeNode}
*/
root() {
return this._root;
}
/**
* Returns the nodes count
* @public
* @return {number}
*/
count() {
return this._count;
}
/**
* Removes a node by its key
* @public
* @param {number|string} key
* @return {boolean}
*/
remove(key) {
const removeRecursively = (k, current) => {
if (current === null) {
return false;
}
if (k < current.getKey()) {
return removeRecursively(k, current.getLeft());
}
if (k > current.getKey()) {
return removeRecursively(k, current.getRight());
}
// current node is the node to remove
// case 1: node has no children
if (current.isLeaf()) {
if (current.isRoot()) {
this._root = null;
} else if (k < current.getParent().getKey()) {
current.getParent().setLeft(null);
} else {
current.getParent().setRight(null);
}
this._count -= 1;
return true;
}
// case 2: node has a left child and no right child
if (!current.hasRight()) {
if (current.isRoot()) {
this._root = current.getLeft();
} else if (k < current.getParent().getKey()) {
current.getParent().setLeft(current.getLeft());
} else {
current.getParent().setRight(current.getLeft());
}
current.getLeft().setParent(current.getParent());
this._count -= 1;
return true;
}
// case 3: node has a right child and no left child
if (!current.hasLeft()) {
if (current.isRoot()) {
this._root = current.getRight();
} else if (k < current.getParent().getKey()) {
current.getParent().setLeft(current.getRight());
} else {
current.getParent().setRight(current.getRight());
}
current.getRight().setParent(current.getParent());
this._count -= 1;
return true;
}
// case 4: node has left and right children
const minRight = this.min(current.getRight());
current.setKey(minRight.getKey()).setValue(minRight.getValue());
return removeRecursively(minRight.getKey(), minRight);
};
return removeRecursively(key, this._root);
}
/**
* Traverses the tree in-order (left-node-right)
* @public
* @param {function} cb
*/
traverseInOrder(cb) {
if (typeof cb !== 'function') {
throw new Error('.traverseInOrder expects a callback function');
}
const traverseRecursive = (current) => {
if (current === null) return;
traverseRecursive(current.getLeft());
cb(current);
traverseRecursive(current.getRight());
};
traverseRecursive(this._root);
}
/**
* Traverses the tree pre-order (node-left-right)
* @public
* @param {function} cb
*/
traversePreOrder(cb) {
if (typeof cb !== 'function') {
throw new Error('.traversePreOrder expects a callback function');
}
const traverseRecursive = (current) => {
if (current === null) return;
cb(current);
traverseRecursive(current.getLeft());
traverseRecursive(current.getRight());
};
traverseRecursive(this._root);
}
/**
* Traverses the tree post-order (left-right-node)
* @public
* @param {function} cb
*/
traversePostOrder(cb) {
if (typeof cb !== 'function') {
throw new Error('.traversePostOrder expects a callback function');
}
const traverseRecursive = (current) => {
if (current === null) return;
traverseRecursive(current.getLeft());
traverseRecursive(current.getRight());
cb(current);
};
traverseRecursive(this._root);
}
/**
* Clears the tree
* @public
*/
clear() {
this._root = null;
this._count = 0;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# 参考
编辑 (opens new window)
上次更新: 2022/10/13, 15:33:21